AN EXTREMAL SET THEORETICAL CHARACTERIZATION OF SOME STEINER SYSTEMS

PETER FRANKL

Received 20 December 1982

Let n, k, t be integers, $n > k > t \ge 0$, and let m(n, k, t) denote the maximum number of sets, in a family of k-subsets of an n-set, no two of which intersect in exactly t elements. The problem of determining m(n, k, t) was raised by Erdős in 1975. In the present paper we prove that if $k \le 2t + 1$ and k - t is a prime, then $m(n, k, t) \le \binom{n}{t} \binom{2k - t - 1}{k} / \binom{2k - t - 1}{t}$. Moreover, equality holds if and only if an (n, 2k - t - 1, t)-Steiner system exists. The proof uses a linear algebraic approach.

1. Introduction

Let X be a finite set of cardinality n. For $0 < k \le n$, let $\binom{X}{k}$ denote the collection of all k-subsets of X. A family \mathscr{F} of k-subsets of X i.e. $\mathscr{F} \subseteq \binom{X}{k}$, is called t-avoiding $(0 \le t < k)$ if the cardinality of the intersection of any two members of \mathscr{F} is different from t. An easy way to construct t-avoiding families is the following: take an arbitrary (t+1)-element subset, T of X and let \mathscr{T} consist of all the supersets of T. This gives $\binom{n-t-1}{k-t-1}$ sets. Erdős [1] conjectured that for k > 2t+1 this is best possible.

Conjecture 1.1. (Erdős) For k>2t+1 and $n>n_0(k,t)$ we have

(1)
$$m(n, k, t) = \binom{n-t-1}{k-t-1}.$$

For t=0 the Erdős—Ko—Rado theorem [2] shows that the conjecture is valid. The same was proved for t=1 in [3]. The asymptotic validity, i.e. $m(n, k, t) \le (1+o(1))\binom{n-t-1}{k-t-1}$ was established in [4] if $k \ge 3t+2$ and in [6] if k-t is a prime power.

194 P. FRANKL

From now on suppose $k \le 2t + 1$. We first describe another construction for *t*-avoiding families. We need two definitions.

Definition 1.2. Let s be an integer, $s \ge t$, and let $\mathscr{S} \subset {X \choose s}$ be a family. If every $T \in {X \choose t}$ is contained in at most one member of \mathscr{S} , then \mathscr{S} is called an (n, s, t) partial Steiner system or shortly a PS(n, s, t). (Of course, the condition is equivalent to $|S \cap S'| < t$ for every $S, S' \in \mathscr{S}$.)

Definition 1.3. A PS(n, s, t) in which every $T \in {X \choose t}$ is contained in exactly one member of \mathscr{S} is called an (n, s, t) Steiner system or shortly an S(n, s, t). (Then, of course, $|\mathscr{S}| = {n \choose t} / {s \choose t}$ holds.)

For a family of sets \mathscr{A} and a positive integer h let us define \mathscr{A}^h , the h'th shadow of \mathscr{A} by

$$\mathscr{A}^h = \{H: |H| = h, \text{ there exists } A \in \mathscr{A} \text{ such that } H \subseteq A \text{ holds} \}.$$

Proposition 1.4. If \mathcal{S} is a PS(n, 2k-t-1, t) then \mathcal{S}^k is t-avoiding.

Proof. Take two arbitrary sets from \mathscr{S}^k : F, F'. Let $S, S' \in \mathscr{S}$ satisfy $F \subset S$, $F' \subset S'$. We have to show $|F \cap F'| \neq t$. If $S \neq S'$, then it follows from $|F \cap F'| \leq |S \cap S'| < t$. If S = S' then we have

$$|F \cap F| = |F| + |F'| - |F \cup F'| \ge 2k - |S| = t + 1.$$

No Steiner system is known to exist for $t \ge 7$ but we are helped by

Theorem 1.5. (Rödl [7]) For fixed s. t and an arbitrary positive ε if $n > n_0(s, t, \varepsilon)$ then there exists a PS(n, s, t), \mathcal{L} satisfying

$$|\mathscr{S}| > (1 - \varepsilon) \binom{n}{t} / \binom{s}{t}.$$

Corollary 1.6. For fixed k and t we have

(3)
$$m(n, k, t) \ge (1 - o(1)) \binom{n}{t} \binom{2k - t - 1}{k} / \binom{2k - t - 1}{t}.$$

In this paper we prove:

Theorem 1.7. Suppose $k \le 2t+1$ and k-t is a prime. Then

(4)
$$m(n, k, t) \leq {n \choose t} {2k-t-1 \choose k} / {2k-t-1 \choose t},$$

and equality holds if and only if there exists an S(n, 2k-t-1, t).

Conjecture 1.8. The statement of Theorem 1.7, remains valid even if we drop the condition "k-t is a prime".

Remark 1.9. The inequality of Theorem 1.7. was proved to be valid for k-t a prime power in [6].

Suppose $\mathscr{F} = \{F_1, ..., F_m\} \subset {X \choose k}$ and $\mathscr{F}^h = \{G_1, ..., G_b\}$. Define a b by m matrix $M^h(\mathscr{F})$ by $m_{ij} = 1$, if $G_i \subset F_j$ and $m_{ij} = 0$, otherwise. Then $M^h(\mathscr{F})$ is called the h'th containment matrix of \mathscr{F} .

Our main tool in proving Theorem 1.7. is the following:

Theorem 1.10. (Frankl, Füredi [5]) Suppose $n > k > g \ge h$, $\mathscr{F} \subseteq {X \choose k}$, and the columns of $M^h(\mathscr{F})$ are linearly independent over the rationals. Then

$$|\mathscr{F}^g|/\binom{k+h}{g} \cong |\mathscr{F}|/\binom{k+h}{h}.$$

2. The proof of Theorem 1.7 in case k=2t+1

Let us write k-t=p. Then t=p-1 and k=2p-1 holds. We prove a somewhat stronger statement:

Theorem 2.1. Suppose $\mathscr{F} \subseteq \binom{X}{2p-1}$, and \mathscr{F} is (p-1)-avoiding. Then the columns of $M^{p-1}(\mathscr{F})$ are linearly independent over GF(p) (and consequently over the rationals), in particular

(6)
$$|\mathscr{F}| \leq |\mathscr{F}^{p-1}| \leq {n \choose p-1}.$$

Moreover $|\mathcal{F}| = |\mathcal{F}^{p-1}|$ holds if and only if for some PS(n, 3p-2, p-1), \mathcal{F} we have $\mathcal{F} = \mathcal{L}^{2p-1}$.

Proof. Let us set $M = M^{p-1}(\mathcal{F})$ and let us consider $N = M^*M$ (M^* is the transposed of M). Then N is an m by m matrix with general entry n_{ij} equal to the scalar product of the i'th and j'th column of M. Since the columns are (0, 1)-vectors, this scalar product is just the number of (p-1)-subsets in the intersection $F_i \cap F_j$, i.e. $\binom{|F_i \cap F_j|}{p-1}$.

Thus the diagonal entries of N are equal to $\binom{2p-1}{p-1} \equiv 1 \pmod{p}$. Since \mathscr{F} is (p-1)-

avoiding the off-diagonal entries are all from 0, $\binom{p}{p-1}$, ..., $\binom{2p-2}{p-1}$. These numbers are all congruent to 0 modulo p. Thus over GF(p) N is the m by m identity matrix. I_m Hence, rank M= rank N=m holds, proving the first statement of the theorem.

From now on assume m=b. Then M is a square-matrix. Since $M^*M \equiv I_m \pmod{p}$, $MM^* \equiv I_m \pmod{p}$ holds as well. Let us translate this identity to the language of sets. The general entry a_{ij} of MM^* is just the number of sets in $\mathscr F$ which contain $G_i \cup G_j$. Thus for $i \neq j$ this number is always divisible by p. In particular, if it is non-zero then it is at least p. This yields the following proposition.

Proposition 2.2. Suppose $A \in \mathcal{F}^{2p-2}$. Then there are at least p members of \mathcal{F} which contain A.

196 P. FRANKL

Next we prove that we must have equality. In fact Theorem 1.10. implies:

(7)
$$|\mathscr{F}^{2p-2}| \geq |\mathscr{F}| \binom{3p-2}{2p-2} / \binom{3p-2}{2p-1} = |\mathscr{F}| (2p-1)/p.$$

Denoting by e the number of pairs (A, F) with $A \subset F \in \mathcal{F}$, |A| = 2p - 2, we obviously have $e = (2p - 1)|\mathcal{F}|$. Using (7) we obtain

$$(8) e \leq p|\mathscr{F}^{2p-2}|.$$

Now (8) tells that on the average every $A \in \mathcal{F}^{2p-2}$ is contained in at most p members of \mathcal{F} . Comparing this with Proposition 2.2, we infer that we must have always equality. This gives the case s=2p-2 of the following lemma.

Lemma 2.3. Suppose s is an integer, $p-1 \le s \le 2p-2$, and $A \in \mathcal{F}^s$. Then there is a set $P = P(A) \in \begin{pmatrix} X \\ 3p-2-s \end{pmatrix}$ such that

$$\left\{G \in \begin{pmatrix} X - A \\ 2p - 1 - s \end{pmatrix} : (A \cup G) \in \mathscr{F}\right\} = \begin{pmatrix} P \\ 2p - 1 - s \end{pmatrix}.$$

Proof of the lemma. We apply induction on 2p-2-s. We have already settled the case s=2p-2. Suppose s<2p-2 and the statement of the lemma is verified for s+1. Since $A \in \mathscr{F}^s$ we may choose A', F such that $A \subset A' \subset F \in \mathscr{F}$, and |A'| = s+1 holds. Let us write $(A'-A) \cup P(A') = \{y_1, \dots, y_{3p-2-s}\}$.

As a next step we prove:

Proposition 2.4. Either the lemma holds for A with $P(A) = \{y_1, ..., y_{3p-2-s}\}$ or A is contained in more than $\begin{pmatrix} 3p-2-s\\2p-1-s \end{pmatrix}$ sets in \mathcal{F} .

Proof. We apply the inductional hypothesis to $A_i = A \cup \{y_i\}$, $1 \le i \le 3p - 2 - s$, and obtain sets $P_i \in \begin{pmatrix} X - A_i \\ (3p - 2 - (s + 1) \end{pmatrix}$ such that for every $G \in \begin{pmatrix} P_i \\ 2p - 2 - s \end{pmatrix}$ we have $A \subset (A_i \cup G) \in \mathcal{F}$. Counted with multiplicity this would give us $(3p - 2 - s) \begin{pmatrix} 3p - 3 - s \\ 2p - 2 - s \end{pmatrix}$ sets $F \in \mathcal{F}$, containing A. Each particular F is counted exactly $|(F - A) \cap \{y_1, \dots, y_{3p-2-s}\}|$ times. Thus at most (2p - 1 - s)-times. Thus there are at least $\frac{3p - 2 - s}{2p - 1 - s} = \begin{pmatrix} 3p - 3 - s \\ 2p - 2 - s \end{pmatrix} = \begin{pmatrix} 3p - 2 - s \\ 2p - 1 - s \end{pmatrix}$ such sets. Moreover, in order to have equality it is necessary that $(F - A) \subset \{y_1, \dots, y_{3p-2-s}\}$ holds for every F satisfying $A \subset F \in \mathcal{F}$. We conclude $P_i = \{y_1, \dots, y_{3p-2-s}\} - \{y_i\}$, and that the lemma holds with $P(A) = \{y_1, \dots, y_{3p-2-s}\}$. We go on with the proof of the lemma. By Theorem 1.10, we have:

(9)
$$|\mathscr{F}^s| \ge |\mathscr{F}| {3p-2 \choose s} / {3p-2 \choose 2p-1} = |\mathscr{F}| {2p-1 \choose s} / {3p-2-s \choose 2p-1-s}$$
, or, equivalently,
$$|\mathscr{F}^s| {3p-2-s \choose 2p-1-s} \ge |\mathscr{F}| {2p-1 \choose s}.$$

Counting again the number of pairs (A, F) satisfying $A \subset F \in \mathcal{F}$, |A| = s, in two different ways, using Proposition 2.4, we obtain:

$$|\mathscr{F}^s| {3p-2-s \choose 2p-1-s} \leq |\mathscr{F}| {2p-1 \choose s}.$$

Comparing (9) and (10) we infer that equality must hold in both cases and consequently in Proposition 2.4 always the first case appears, finishing the proof of the lemma. \blacksquare

Now we continue the proof of Theorem 2.1. Let us define $\mathscr{G} = \{A \cup P(A): A \in \mathscr{F}^{p-1}\}$. We consider \mathscr{G} as a subset of $\binom{X}{3p-2}$, i.e. taking each (3p-2)-set only once. By definition $\mathscr{F} \subseteq \mathscr{G}^{2p-1}$ holds. We want to prove that \mathscr{G} is a PS(n, 3p-2, p-1) i.e. for $S \neq S' \in \mathscr{G}$ we have $|S \cap S'| < p-1$. Suppose the contrary that is $p-1 \leq |S \cap S'|$, but $|S \cup S'| > 3p-2$. Let $A, A' \in \mathscr{F}^{p-1}$ be such that $S = A \cup P(A)$ and $S' = A' \cup P(A')$ hold. It is easy to see that one can find a p-element set $B \subset (S-A)$ satisfying $p-1 \leq |(A \cup B) \cap S'| < |(A \cup B)| = 2p-1$. Once B chosen take a p-subset, B' of S' - A' such that $|(A \cup B)| \cap |(A' \cup B')| = p-1$. This is possible because $p-1 \leq |(A \cup B) \cap S'| \leq 2p-2$. But $A \cup B$ and $A' \cup B'$ are both in \mathscr{F} , contradicting to the fact that \mathscr{F} is (p-1)-avoiding. Thus \mathscr{F} is a PS(n, 3p-2, p-1).

If C is a (p-1)-subset of $(A \cup P(A)) \in \mathcal{G}$, $A \in \mathcal{F}^{p-1}$, then we can choose a p-subset B of P(A) such that $C \subset (A \cup B)$, and consequently $C \in \mathcal{F}^{p-1}$ holds. Thus we have $|\mathcal{F}^{p-1}| = \binom{3p-2}{p-1}|\mathcal{S}|$. $\mathcal{F} \subseteq \mathcal{S}^{2p-1}$ implies $|\mathcal{F}| \le \binom{3p-2}{2p-1}|\mathcal{S}|$. Using $|\mathcal{F}| = |\mathcal{F}^{p-1}|$ we infer $\mathcal{F} = \mathcal{S}^{2p-1}$.

Now we deduce the case k = 2t+1 of Theorem 1.7. from Theorem 2.1. In view of (6) we have $m(n, 2t+1, t) \le \binom{n}{t}$. Suppose that for the *t*-avoiding family $\mathscr{F} \subseteq \binom{X}{2t+1}$ equality holds. Then (6) implies $\mathscr{F}^t = \binom{X}{t}$, and by the second part of Theorem 2.1, for some PS(n, 3t+1, t), \mathscr{S} we have $\mathscr{F} = \mathscr{S}^{2t+1}$. Since $\mathscr{F}^t = \binom{X}{t}$, every *t*-subset of *X* is contained in some $S \in \mathscr{S}$, i.e. \mathscr{S} is an S(n, 2t+1, t), as desired.

3. Proof of Theorem 1.7 in the general case

Let us set 2t+1-k=d and suppose d is positive. Let further \mathscr{F} be a t-avoiding family of k-subsets of X. For $D \in {X \choose d}$ let us define

$$\mathscr{F}_D = \{F - D : D \subset F \in \mathscr{F}\}.$$

Then \mathscr{F}_D is a (t-d)-avoiding family of (2(t-d)+1)-subsets of X-D. Thus we may apply the already settled case of Theorem 1.7 to \mathscr{F}_D , and obtain

$$|\mathscr{F}_{D}| \leq \binom{n-d}{t-d}.$$

198 P. FRANKL

Counting in two different ways the number of pairs (D, F) satisfying $D \subset F \in \mathcal{F}$, $D \in \binom{X}{d}$ we infer:

(12)
$$\sum_{D \in {X \choose d}} |\mathscr{F}_D| = {k \choose d} |\mathscr{F}|.$$

Combining (11) and (12) we get (d=2t+1-k):

(13)

$$|\mathcal{F}| \leq \frac{\binom{n+k-2t-1}{k-t-1}\binom{n}{2t+1-k}}{\binom{k}{2t+1-k}} = \frac{n! (2k-2t-1)!}{(n-t)! (k-t-1)! k!} = \frac{\binom{n}{t}\binom{2k-t-1}{k}}{\binom{2k-t-1}{t}},$$

proving inequality (4).

Assume that equality holds in (13). Then equality must hold in (11) for every $D \in {X \choose d}$. By the already proved case of Theorem 1.7 for every $D \in {X \choose d}$ there exists \mathscr{S}_D , an S(n-d, 2k-t-1-d, t-d) such that $\mathscr{F}_D = \mathscr{S}_D^{k-d}$ holds. Note that t-d=k-t-1 is non-negative and it is positive unless k=t+1. However, for k=t+1 every t-avoiding family is a PS(n, k, t) thus the second statement of Theorem 1.7 just coincides with the definition of an S(n, k, k-1). Thus we may assume $d \subseteq t-1$ and proceed with the proof of the theorem. Let us define $\mathscr{S} = \{D \cup S_D : D \in {X \choose d}, S_D \in \mathscr{S}_D$. Obviously, $\mathscr{F} \subseteq \mathscr{S}^k$ holds.

If $T \in {X \choose t}$ then we can choose a $D \in {T \choose d}$ and an $S_D \in \mathscr{S}_D$ such that $(T-D) \subset \subset S_D$. Consequently $T \subset (D \cup S_D) \in \mathscr{S}$ holds, showing that every *t*-subset of *X* is contained in at least one member of \mathscr{S} .

Suppose $S \in \mathcal{S}$, i.e. for some $D \in \binom{X}{d}$ and $S_D \in \mathcal{S}_D$ we have $S = D \cup S_D$. Let D' be an arbitrary d-subset of S satisfying $|D \cap D'| = d - 1$. Let F be an arbitrary k-subset of S satisfying $(D \cup D') \subseteq F$. Let further $S_{D'}$ be the unique member of $\mathcal{S}_{D'}$ which contains F - D'. We want to show

Proposition 3.1. $D \cup S_D = D' \cup S_{D'}$.

Proof. Let us argue indirectly and take some element $x \in ((D \cup S_D) - (D' \cup S_{D'}))$. Let further y be an arbitrary element of $F - (D \cup D')$. Then $(F - \{y\} \cup \{x\}) \in \mathscr{F}$. Thus there is a unique set $R_{D'} \in \mathscr{F}_{D'}$ satisfying $(F' - D') \in \mathscr{F}_{D'}$. However, $((F - D') \cap (F' - D')) \subseteq (S_{D'} \cap R_{D'})$, i.e. this latter intersection has size at least $k - d - 1 \ge 1 \ge t - d$. Since $\mathscr{F}_{D'}$ is an S(n - d, 2k - t - 1 - d, t - d) $S_{D'}$ and $S_{D'}$ must coincide, contradicting $S_{D'} \in \mathscr{F}_{D'}$.

Since equality is transitive and for every $D'' \in \binom{D \cup S_D}{d}$ we can find a chain $D = D_0, ..., D_r = D''$ such that $|D_i \cap D_{i+1}| = d-1$ for i = 0, ..., r-1, and all the D_i are d-subsets of $D \cup S_D$; we infer that Proposition 3.1 holds for all d-subsets of

 $D \cup S_D$. Consequently, we obtain every $S \in \mathscr{S}$ exactly $\binom{|S|}{d} = \binom{2k-t-1}{d}$ times, yielding:

$$|\mathcal{S}| = \binom{n}{d} |\mathcal{S}_D| / \binom{2k-t-1}{d} = \binom{n}{t} / \binom{2k-t-1}{t}.$$

This equality and the fact that every *t*-subset of X is contained in at least one member of $\mathscr S$ imply that $\mathscr S$ is an S(n, 2k-t-1, t). Since $|\mathscr F| = \binom{2k-t-1}{k} |\mathscr S|$, it follows that $\mathscr F = \mathscr S^k$, concluding the proof of Theorem 1.7.

Added in proof. Recently Z. Füredi and the author proved Conjecture 1.1.

References

- [1] P. Erdős, Problems and results in graph theory and combinatorial analysis, *Proc. Fifth British Comb. Conf. 1975 Aberdeen, Congressus Numerantium, 15 Utilitas Math.*, Winnipeg, 1976.
- [2] P. Erdős, C. Ko and R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford (2), 12 (1961), 313—320.
- [3] P. FRANKL, On families of finite sets no two of which intersect in a singleton, Bull. Austral. Math. Soc. 17 (1977), 125—134.
- [4] P. Frankl, Extremal problems and coverings of the space, European J. Comb. 1 (1980), 101-106.
- [5] P. Frankl and Z. Füredi, On families of finite sets no two of which intersect in a given number of elements, J. Comb. Th. (A), to appear.
- [6] P. FRANKL and R. M. Wilson, Intersection theorems with geometric consequences, Combinatorica 1 (1981), 357—368.
- [7] V. Rödl, Almost Steiner systems always exist, to appear.

Peter Frankl

Centre National de la Recherche Scientifique 15 Quai Anatole France, 75007 Paris, France